书架
学霸从改变开始
导航
关灯
护眼
字体:

第271章 这还用说?

『如果章节错误,点此举报』
第(1/3)页
  质数,也就是素数。

  指的是大于1的自然数,除了1和它自身外,不能被其他自然数整除的数。

  素数的个数是无穷的,关于这一点的证明,古希腊数学家欧几里得早在他的著作《几何原本》中便给出了经典的证明。

  也因为素数的个数是无穷的,所以就有人会问,素数的分布规律是什么?

  100000以下有多少个素数?

  一个随机的100位数多大可能是素数?

  这也就促进了数论这门纯数学科的发展,也就有了是否每个大于5的偶数都可写成两个素数之和的哥德巴赫猜想。

  也就有了是否存在无穷多的孪生素数,斐波那契数列内是否存在无穷多的素数,是否有无穷多个梅森素数,是否存在无穷个形式如X²+1的素数,诸如此类的问题。

  这里面,有像“在一个大于1的数和它的2倍之间,必定存在至少一个素数”,“存在任意长度的素数等差数列”这样利用素数定理解决的问题。

  但更多的,还只是一个猜想。

  如果要分级的话,陈舟现在研究的克拉梅尔猜想,大概在梅森素数问题之上,在杰波夫猜想和孪生素数猜想之下。

  所以,现在的陈舟有点不敢确定,自己的想法,究竟是不是对的。

  一个历时近百年,没有人能够接近证明的数学猜想,他居然发现好像有点不对,需要去修正。

  其实说不对的话,用词是不恰当的。

  因为陈舟并不是证伪了,只是找到了“改进”之后的质数间距的猜想。

  就像2014年,陶哲轩他们证明的爱多士猜想一样。

  陈舟改进的只是一个更为温和的猜想。

  即使证明出来,也并不能说明克拉梅尔猜想就是错的。

  而且其价值是小于卡拉梅尔猜想的。

  因为改进后的问题,其素数间隔仍是小于克拉梅尔猜想的。

  放下笔,伸手揉了揉太阳穴,陈舟的表情有点古怪。

  草稿纸上,写着的是:

  【N以内相邻素数最大间隔的猜想,(Pn+1≤N)max(Pn+1-Pn)≈logN(logN-loglogN)+2(N≥7)】

  这里的N指的便是大于等于7的任意自然数。

  “log”则是自然对数的简写。

  而克拉梅尔猜想的表述是【limn→∞sup(Pn+1-P

(本章未完,请翻页)