书架
学霸从改变开始
导航
关灯
护眼
字体:

第404章 最贪的选择

『如果章节错误,点此举报』
第(1/3)页
  陈舟明显愣了一下。

  这是一上来,就考自己吗?

  从几何角度研究非交换环?

  真要说起来,对于非交换环,陈舟还是有些看法的。

  非交换环的一个最常见的例子,或许就是矩阵了。

  利用矩阵可以得到一批非交换环的反例。

  就好像,若S是包含在环R内的相应维数为无穷的域。

  那么A=Re_11+Re_12+Se_22,是左Noether与左Artin的。

  但不是右Noerther与右Artin,这说明了链条件在非交换环中有左与右的差别。

  在除环上的所有矩阵的有限直积,构成了所谓的半单环类。

  这就是通常所说的Wedderburn-Artin定理。

  这也是非交换环中第一个精彩的结构定理。

  更加有趣的是,它通过矩阵的对称结构,自然说明了左半单环等价于右半单环。

  在交换环中,最常见的两个根分别是Jacobson根与幂零根。

  前者简称为大根,它是所有极大理想的交。

  后者简称为素根或小根,它是所有素理想的交。

  而在非交换的情形中,一个根就可能分化为三个根,满足某类条件左、右理想以及理想的交。

  事实上,非交换环R,所有极大左理想的交,恰恰就是所有极大右理想的交。

  并且它们良好的继承了相应的可逆性质。

  因此就称其为非交换环的Jacobson根,也记作rad(R)。

  尽管非交换环中有左与右的区别,但也不乏此类殊途同归的有趣现象。

  而在交换代数中,由于局部化技术的广泛使用,局部环成为了一个研究的焦点。

  但非交换环的局部环技术,似乎受到了限制。

  反倒是特别在乎半局部环。

  值得注意的是,非交换环中对半局部环的定义,并非是指它只有有限个极大左理想。

  而是定义为R/rad(R)是半单环或者是Artin环。

  事实上,半局部环R的各(双边)理想均包含rad(R),可以化归为Artin环R/rad(R)中的极大理想,因此

(本章未完,请翻页)