第四十五章 微分
『如果章节错误,点此举报』
第(3/3)页
得,某个人在某一瞬间很短很短的时间之内,他的速度。”
“当然!自古以来,就有一个诡论,那就是假设把我们动的这个时间跟位置记录下来,画下来,而且我们假设它可以被画下来,那么,假如说每一瞬间,我们在画上都没有动过,那我们是怎么从一个地方移动到另一个地方的。”
“其实实际情况自然是,我们不可能在每一瞬间都没有动,我们还是会动的。”
“而接下来我们说的这个,就是为了解决这个问题,如下所示:”
图。
“我们计算速度,有这么一条公式,移动过的距离x(t)-x(a),除以时间变化t-a,那我们要想知道,我们在很短很短的时间,我们的速度,虽然我们已经有了上面这个式子,可问题是,这个很短很短的时间到底是多少。”
“有人说,很短很短的时间是眨一下眼的功夫,也有人不同意,说很短很短的时间是喜鹊扇一下翅膀所需要的时间,那么,我们该如何定义这个很短很短的时间,才能够让所有的人都信服。”
“那我们就可以让这个式子当中的t=a,t=a的意思,就是说,我让t就是a,这样大家面对这个很短很短的时间,就不会说,t-a到底是不是就是已经很短很短了。”
“因为我们让t=a,那就已经是变得不可再短了,是也不是?”
“但是在数术上,如果让t=a,我们没有办法把这个式子算出来。”
“上面是零,下面是零,零除以零等于多少?可我们还是想让这个式子能被算出来。”
“所以,在这里,我们再次引入一个新的符号,来表示我们接下来要做的事。”
图。
“我们就用这个形式写出来,表示我们接下来要做的事。”
“而且,我们将这个过程,称之为微分。”
“至于前面我们说的面积求和,则是积分。”
“那么问题来了,这两个东西加起来,合称‘微积分’,接下来要怎么用。”
“我们还是刚刚的例子,计算瞬时速度,也就是在一段很短很短时间的速度,这个速度是通过路程除以时间,微分得来的。”
“微分所记录的是每一个很短很短的时间,人所走过时的速度。”
“现在我假设,之前积分的图,这就是人在很短很短时间的速度的变化的坐标图。”
“现在我要求,人在某一段时间之内,也就是由a到b,他移动了多少路程,该怎么求?”
第(3/3)页
得,某个人在某一瞬间很短很短的时间之内,他的速度。”
“当然!自古以来,就有一个诡论,那就是假设把我们动的这个时间跟位置记录下来,画下来,而且我们假设它可以被画下来,那么,假如说每一瞬间,我们在画上都没有动过,那我们是怎么从一个地方移动到另一个地方的。”
“其实实际情况自然是,我们不可能在每一瞬间都没有动,我们还是会动的。”
“而接下来我们说的这个,就是为了解决这个问题,如下所示:”
图。
“我们计算速度,有这么一条公式,移动过的距离x(t)-x(a),除以时间变化t-a,那我们要想知道,我们在很短很短的时间,我们的速度,虽然我们已经有了上面这个式子,可问题是,这个很短很短的时间到底是多少。”
“有人说,很短很短的时间是眨一下眼的功夫,也有人不同意,说很短很短的时间是喜鹊扇一下翅膀所需要的时间,那么,我们该如何定义这个很短很短的时间,才能够让所有的人都信服。”
“那我们就可以让这个式子当中的t=a,t=a的意思,就是说,我让t就是a,这样大家面对这个很短很短的时间,就不会说,t-a到底是不是就是已经很短很短了。”
“因为我们让t=a,那就已经是变得不可再短了,是也不是?”
“但是在数术上,如果让t=a,我们没有办法把这个式子算出来。”
“上面是零,下面是零,零除以零等于多少?可我们还是想让这个式子能被算出来。”
“所以,在这里,我们再次引入一个新的符号,来表示我们接下来要做的事。”
图。
“我们就用这个形式写出来,表示我们接下来要做的事。”
“而且,我们将这个过程,称之为微分。”
“至于前面我们说的面积求和,则是积分。”
“那么问题来了,这两个东西加起来,合称‘微积分’,接下来要怎么用。”
“我们还是刚刚的例子,计算瞬时速度,也就是在一段很短很短时间的速度,这个速度是通过路程除以时间,微分得来的。”
“微分所记录的是每一个很短很短的时间,人所走过时的速度。”
“现在我假设,之前积分的图,这就是人在很短很短时间的速度的变化的坐标图。”
“现在我要求,人在某一段时间之内,也就是由a到b,他移动了多少路程,该怎么求?”